A Case Report and Literature Review on Hepatoid Carcinoma of the Ovary

Jiana Li1,2 and Xiaohua Wu1,2*

1Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, China
2Department of Oncology, Shanghai Medical College, Fudan University, China

Abstract

Primary Hepatoid Carcinoma of the Ovary (HCO) is a rare, aggressive ovarian malignant tumor, morphologically resembling hepatocellular carcinoma and featuring with elevated serum Alpha-Fetoprotein (AFP) and Carbohydrate Antigen 125 (CA125). We report a case of a 64-year-old postmenopausal Chinese woman who presented with lower abdominal pain and vaginal bleeding. The patient went through a maximal debulking surgery and the pathological biopsy revealed hepatoid carcinoma of the ovary. The immunohistochemical staining showed that tumor cells were positive for AFP, spalt-like transcription factor 4 (SALL4), monoclonal anti-cytokeratin (AE1/3) and tumor Protein 53 (P53). After operation and one course of chemotherapy, the serum AFP dramatically declined to normal level and maintained for almost 2 years. Literature review demonstrates that the pathological and immunohistochemical features of HCO are not consistent, but elevated serum AFP is a common characteristic and SALL4 can be adopted to differentiate HCO from Hepatocellular Carcinoma (HCC). Although there is no conventional treatment for HCO, complete tumor debulking surgery followed by chemotherapy as shown in this case can be a potential option. The serum AFP, CA125 rather than Human Epididymis Protein 4 (HE4) can be employed as possible biomarkers to track treatment and monitor recurrence.

Keywords: Hepatoid adenocarcinoma of the ovary; Ovarian cancer; HCO; AFP; Immunohistochemical staining

Introduction

Hepatoid carcinoma is a rare type of malignant tumor with morphologic characteristics similar to HCC, arising outside the liver, most commonly in the stomach and less in the ovary, uterus, lung, bladder or kidney [1]. In 1987, Ishikura and Scully first reported five cases of HCO, mainly in postmenopausal women who presented with an ovarian mass and elevated serum AFP [2]. The microscopic characteristics of these tumors are sheets, trabecula and cords of cells with moderate to large amounts of eosinophilic cytoplasm and round to oval central nuclei [3]. HCO must be distinguished from the HCC metastatic to the ovary [4] and other ovarian tumors with abundant eosinophilic cytoplasm, including Hepatoid Yolk Sac Tumors (HYSTs) [5], Sertoli–Leydig cell tumors, and oxyphilic clear cell carcinomas. We describe an additional case of a 64-year-old postmenopausal Chinese woman diagnosed with HCO, featuring with significantly elevated serum AFP and CA125 level.

Case Presentation

A 64-year-old postmenopausal female was admitted to our hospital with lower abdominal pain for 3 months and vaginal bleeding for 21 days. Her physical examination revealed the existence of a lower abdominal mass about the size of 8 cm to 9 cm in diameter, closely related to the uterus. Obvious tenderness and rebound pain were complained about. Shifting dullness was positive and a small amount of blood clot was seen in the vagina. The abdominal Computed Tomography (CT) showed a cystic and solid mass in the right annex and a cystic mass in the left annex with a large amount of ascites. The Magnetic Resonance Imaging (MRI) confirmed the same finding of bilateral masses, with thickened and dense peritoneum and mesentery (Figure 1). No obvious abnormal imaging performance in the upper digestive tract, liver, pancreas or kidney. Laboratory tests showed an elevated AFP level of 3630 ng/ml (normal <10), CA125 level of 337.9 U/ml (normal <35) and HE4 level of 142.7 pmol/L (normal <81.9). She had a cesarean section 26 years ago and had no family history of any malignancy.
A maximal debulking surgery was arranged under the impression of ovarian cancer on April 20th, 2015. During the surgery, a right ovarian tumor of 9 cm × 7 cm × 4 cm and a left one of 3.3 cm × 3 cm × 1.5 cm were discovered with direct invasion to the pelvic peritoneum, uterus, rectum and mesentery. Multiple solid nodules of 2 cm to 3 cm in diameter were palpable in the omentum. A contracted tumor tissue about 6 cm × 6 cm × 8 cm in size was found in the sigmoid colon mesentery. A 10 cm section of colorectum presented significant stiffness, thickening, edema and flatulence, with fixed adhesion to the uterus posterior wall. Radical surgery was performed, including a total hysterectomy, bilateral salpingo-oophorectomy, omentectomy, appendectomy and pelvic floor peritoneum resection. Additionally, a partial colorectal resection and end-to-end anastomosis were performed and an ileostomy was created. The postoperative pathological results suggested a poorly differentiated adenocarcinoma displaying a hepatoid pattern without yolk sac tumor-like areas. The omentum mass, pelvic peritoneum, rectal and appendiceal mesentery were positive for malignancy and malignant cells were seen in ascites. All the resected pelvic lymph nodes were negative. The final diagnosis was HCO of stage IIIC.
One month after the surgery, the AFP level of our patient decreased from 3630 ng/ml to 158.5 ng/ml. Then she was treated with combined chemotherapy of paclitaxel and carboplatin for 9 courses until May 11th, 2016. The response was satisfactory and her serum AFP level returned to within the normal range.

The patient was disease-free for about two years, confirmed by MRI and stable serum AFP level. However, in March 2017, her onset with the symptoms of intestinal obstruction, and her serum AFP was gradually elevated. Her pelvic MRI revealed pelvic effusion and metastasis in the omentum, peritoneum and mesenteric nodules. Recurrence of ovarian cancer was considered but we applied palliative treatment instead of the aggressive one due to the high risk of surgery. Chemotherapy was administered with paclitaxel and carboplatin. The patient’s AFP level did decrease after the course but the chemotherapy was terminated after the third course of administration on October 12th, 2017 because of the severe adverse reaction (IV-degree myelosuppression). On November 20th, 2017, the chest and abdominal CT revealed pleural effusion and a large amount of peritoneal effusion with multiple small nodules in the peritoneum and swollen retroperitoneal lymph nodes. In spite of comprehensive supportive treatment, the patient died of cachexia and multiple organ failure in early 2018, about 3 years after the initial diagnosis.

The patient’s diagnosis, treatment, follow-up, and outcome are presented in chronological order in Table 1. Figure 2 depicts the whole course of disease monitoring using AFP, CA125, and HE4 values.

Pathology

Tumor tissues were formalin-fixed, paraffin-embedded, and stained with hematoxylin and eosin. Immunohistochemistry was performed on a subset of the sections [6]. Gross findings showed that the right ovarian of 9 cm × 7 cm × 4 cm and the left one of 3.3 cm × 3 cm × 1.5 cm were both involved with malignancy. Under the microscope, the cords of hepatoid cells are arranged in thick trabecular structures, with abundant eosinophilic cytoplasm and clear boundaries. The structure was similar to that of hepatocellular carcinoma [4]. Mitotic images of tumor cells were occasionally observed. The immunohistochemistry staining of AFP was found positive inside the clear cell components and around the tumor cells (Figure 3A). SALL4, P53, AE1/AE3, EMA, CD10, and villin staining were also found to be extensively positive (Figures 3B–3D), while Hepa-1, CD10, and HNF1-β were found to be focally positive. CK7, Arg-1, ER, PR, Vimentin, WT1, CK30, and Napsin A were all observed to be negative. No foci of yolk sac tumor, teratoma, or other malignant germ cell tumors were observed grossly or microscopically [7,8]. The ultimate histological diagnosis was hepatoid carcinoma of the ovary, a poorly differentiated adenocarcinoma with a hepatoid appearance.

Discussion

Primary hepatoid carcinoma of ovary is a poorly differentiated and aggressive ovarian malignant tumor that originates from an extrahepatic part but resembles hepatocellular tumor in histopathological type and immunophenotype. It is an uncommon tumor type that has now been reported in no more than fifty cases in literature since Ishikura and Scully first designated it in 1987 [2]. (Listed in supplementary material Table 1). Patients range in age from 27 to 79 years old, with a median age of 57.1, more common in perimenopausal women [6]. Most patients have no obvious symptoms in early period and often present with abdominal distention, lower abdominal pain and a pelvic mass. The tumor mainly involves unilateral ovary and rarely bilateral. Elevated serum AFP is often detected, but there are still several cases exhibiting normal AFP level [6,9]. Due to the high degree of malignancy, most HCO cases are found in advanced stages, and pelvic and lung metastasis is common [10,11]. The average survival period after initial diagnosis is about 2 years [12].

Histopathological characteristics of hepatoid carcinoma of the ovary include microscopically tumor cells arranged in flakes, nests, or trabecular structures; rich in blood sinus, similar to the arrangement of liver cancer cells; containing abundant eosinophilic cytoplasm; uniformity of cell size; occasionally with giant bizarre cells and multinucleated tumor cells; and positive hyaline globules inside and outside the cytoplasm [13–15]. The unique pathologic appearance of HCO must be distinguished from HCC and HYST. Currently, there is no reliable way of laboratory tests to completely rule out HCC unless combined with clinical and radiographical data. HYSTs are more common in a younger age group, mostly accompanied with gonadal dysgenesis, and pathologically characterized by uniform cells lacking giant bizarre cells with abundant cytoplasm [8], which is totally different from HCO. Immunohistochemical staining of AFP was broadly applied to diagnose HCO. However, negative AFP staining cannot exclude the diagnosis of HCO according to previous examples [6,9,16–18]. More accurate diagnostic method should be established. In our case, immunohistochemical studies revealed SALL-4 positivity. SALL-4 is an important marker of germ-cell tumors [19], but it is not expressed in hepatocellular tumors, and there have also been reports of other hepatoid adenocarcinomas expressing SALL-4 [20–22]. Therefore, SALL-4 may be a potential indicator to differentiate HCO from metastatic HCC.

The histogenesis of this tumor is mostly recognized as surface epithelial ovarian tumors. There is abundant evidence to support this opinion. The onset age of HCO is similar to that of epithelial ovarian cancer [22]. In some cases, the tumor tissue was mixed with serous or mucinous carcinoma, also suggesting epithelial origin on the ovarian surface [23]. The fact that most patients have high levels of serum CA125 and CA125 antigen expression by immunohistochemistry is another crucial clue. Moreover, like high-grade serous carcinoma,
most HCOs have an aggressive clinical history with rapid progression, extensive intraperitoneal dissemination, and poor treatment response [14]. In spite of this, it is important to remember that the hepatoid phenotype is nonspecific, necessitating the integration of pathologic and clinical information to make a definite diagnosis.

There is still insufficient data to determine the optimal treatment of HCO patients. Although there is no standard regimen, most patients are treated with surgery (optimal or maximal cytoreduction) and adjuvant chemotherapy, the same as epithelial ovarian cancer. According to the serological AFP level monitoring of our patient before and after chemotherapy, we can draw a conclusion that adjuvant chemotherapy can lower AFP in certain patients and lengthen their lives. Pandey et al. [13] used Sorafenib, a hepatocellular carcinoma medication, as adjuvant treatment for postoperative HCO patients; however the outcomes were disappointing [13].

Conclusion

The histogenesis and immunohistochemical profile of HCO have yet to be determined. AFP staining has been shown routinely positive but still with several exceptions. SALL-4 may be regarded as a good indicator of HCO despite its low positive rate. Both AFP and CA125, rather than HE4, can be employed as prognostic biomarkers and may be used to track therapy response and screen for recurrence. Treatment approaches are not unified, but a cytoreductive surgery followed by a platinum and taxane-based chemotherapy has shown similar results to other ovarian carcinomas. The second-line therapy after platinum resistance requires further exploration.

References