Prevalence of ESBL Encoding Genes in Acinetobacter baumannii Strains Isolated from Various Samples of a Tertiary Care Hospital in Mymensingh

Hosne Ara*

Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh

Abstract

The aim of this study was to find the prevalence of ESBL genes among A. baumannii isolates. In this cross sectional study, 49 Acinetobacter spp. were isolated from various clinical samples from March 2019 to February 2020 conducted in the Department of Microbiology Mymensingh Medical College. Clinical samples including endotracheal aspirates, wound swab/pus, urine and blood. A total of 380 samples were analyzed. Growth was obtained in 34.21% of the samples yielding 130 organisms. Out of 130 organisms, 49 (37.69%) were Acinetobacter spp. Among 49 Acinetobacter spp, 39 (79.59%) were Acinetobacter baumannii which was identified by PCR targeting OXA-51 like gene. Amplification of the ESBL encoding genes, namely CTX-M, TEM, SHV done by molecular technique PCR. The most antibacterial resistance was against ceftriaxone (79.48%) and lower resistance only showed in colistin (12.82%). All the isolates were sensitive to tigecycline. The distribution of ESBLs genes such as TEM 20 (51.28%), CTX-M 16 (41.02%) and SHV 0 (0%). The high resistance to most of the antibiotics among the studied strains and also a high prevalence of TEM gene in A. baumannii strains found in our study gives alarming sign towards the treatment complexity of these strains.

Keywords: Acinetobacter baumannii; Antimicrobial resistance; extended-spectrum-β-lactamase

Introduction

Acinetobacter baumannii is an opportunistic pathogen, with the following characteristics of being Gram-negative, oxidize-negative, non-fermentative, non-motile coccobacilli and has broad range of antibiotic resistance. High morbidity and mortality are the characteristics of nosocomial infections caused by Acinetobacter spp., which included urinary tract, skin and soft tissue infections, pneumonia and bacteremia especially in patients with severe health condition [1-3]. The antimicrobial resistance in this nosocomial pathogen is mainly caused by β-lactamase inactivating enzymes, alteration of membrane porin channels and mutation that changes cellular function [4]. Widespread dissemination of A. baumannii infections, which are resistant to β-lactam antibiotics particularly to the 3rd generation of cephalosporin’s and carbapenems, has become a globally significant problem [5]. Extended- Spectrum β-Lactamases (ESBLs) are enzymes that confer resistance to penicillin’s, 3rd generation cephalosporin’s, monobactams and determined by CTX-M, TEM and SHV genes [6]. These enzymes are mainly plasmid mediated and most are parts of the TEM and SHV families [5,7]. ESBLs play an important role in resistance against later generation cephalosporin such as cefepime, Cefotaxime and ceftazidime [8]. Concerning the emergent importance of ESBLs in antibiotic resistance and its effect on treatment failure, this study was led to assess antibiotic sensitivity patterns of studied strains and determine the prevalence of CTX-M, TEM and SHV genes in A. baumannii strains isolated from tertiary care hospital in Mymensingh.

Materials and Methods

This cross sectional observational type of study was conducted in the Department of Microbiology of Mymensingh Medical College (MMC) over a period of 1 year from March 2019 to February 2020 after getting approval from Institutional Review Board (IRB) of MMC. Written consent was taken from all the participants of this study. Patient who were admitted in the ICU, Surgery and Burn unit of MMC with devices, wound infection and sepsis were included in this study. All clinical specimens were routinely cultured in MacConkey and Blood agar media. Typical colonies were enumerated, picked and examined further. Acinetobacter spp. was identified by gram-
staining, colony morphology, positive catalase, and negative oxidase test, absence of motility and fermentation tests [9]. *A. baumannii* was confirmed by detecting OXA-51 like gene [10]. Finally, all the isolates were evaluated with the PCR technique to detect the ESBL [11] genes of interest. The confirmed isolates were kept frozen -80°C for further tests.

Antibiogram

Antimicrobial susceptibility testing was performed on Mueller-Hinton agar by Kirby-Bauer disc diffusion method [12]. The tested antibiotics were: Amikacin (30 µg), Gentamicin (30 µg), Ciprofloxacin (5 µg), Levofloxacin (5 µg), Doxycycline (30 µg), Cotrimoxazole (1.25/23.75 µg), Piperacillin-Tazobactam (10 µg), Ceftiazidime (30 µg), Ceftriaxone (30 µg), Cefepime (30 µg), Imepenem (10 µg), Meropenem (10 µg), Colistin (10 µg) and Tigecycline (15 µg). The antibiotic discs were obtained from Mast CO, UK. Zone diameter interpreted by according to (CLSI-2018) guidelines [13] except tigecycline (FDA approved) [14]. *Pseudomonas aeruginosa* ATCC 27853 was used as control strain for antibiotic sensitivity.

Amplification of OXA-51 like gene

The bacterial DNA was extracted by boiling method [15]. The specific primers including OXA-51 (Table 1) were used for PCR amplification of the genes [10]. PCR amplification procedure was performed using 25 µl master mix containing DNase free water 18.25 µl, buffer 2.5 µl, dNTP 2 µl, Taq polymerase 0.25 µl, primer 1 µl and DNA 1 µl. PCR amplification was done in thermal cycler device. Agarose gel electrophoresis of the amplified DNA product with 100 bp size marker was carried out in 2% agarose gel for 40 minutes at 80 V and stained with ethidium bromide to detect 353 bp bands.

Amplification of ESBL genes

The specific primers including CTX-M, TEM and SHV (Table1) were used for PCR amplification of the genes [11]. PCR amplification procedure was performed using 25 µl master mix containing DNase free water 18.25 µl, buffer 2.5 µl, dNTP 2 µl, Taq polymerase 0.25 µl, primer 1 µl and DNA 1 µl. PCR amplification was done in thermal cycler device. Agarose gel electrophoresis of the amplified DNA product with 100 bp size marker was carried out in a 2% agarose gel for 40 minutes at 80 V and stained with ethidium bromide to detect 353 bp bands.

Results

A total of 380 samples were analyzed which included tracheal aspirates (70), wound swab/pus (175), catheterized urine (70) and Blood (65). Growth was obtained in 34.21% of the samples yielding 130 organisms. Majority were isolated from endotracheal aspirates (Table 2).

Table 3 showing among 130 isolated strains, 49 Acinetobacter spp. (37.69%) were isolated. Majority were isolated from endotracheal aspirates. Table 4 showing among 49 Acinetobacter spp. 39 (79.59%) were *Acinetobacter baumannii* which was identified by PCR targeting OXA-51 like gene and 10 (20.41%) were other than *Acinetobacter baumannii*. Table 5 showing *Acinetobacter baumannii* was highly resistant (>50%) to most of the antibiotics and lower resistance only showed in Colistin (10.20%). All the isolates were sensitive to Tigecycline. Table 6 showing among 3 ESBLs genes, TEM (51.28%) and CTX-M (41.02%) were predominant respectively. Strains for SHV genes were not detected.

PCR was done to detect the OXA-51 like gene for *Acinetobacter baumannii*, Lane 1, 2, 3, 4, 5, 7, 8, 9, 10, and 11 are showing bands of the amplified product of 353 bp regions and is indicated by arrow. Lane 6 shows 100 bp ladder (Figure 1). PCR was done to detect the TEM gene for *Acinetobacter baumannii*, Lane 8, 9, 10, 11 are showing bands of the amplified product of 445 bp regions and is indicated by arrow. Lane 7 shows the 100 bp ladder (Figure 2). PCR was done to detect the CTX-M gene for *Acinetobacter baumannii*. Lane 2, 7, 9, 10, 11, 12, and 18 are showing bands of the amplified product of 593 bp regions and is indicated by arrow. Lane 8 and 17 shows the 100 bp ladder (Figure 3).

Discussion

Acinetobacter baumannii is a common opportunistic pathogen that causes major nosocomial infection in hospitals. This study was conducted on critically ill patients of intensive care unit, Surgery and Burn unit and sample size was 380. Among them, 130 (34.21%) yielded growth correlates with the findings from BIRDEM hospital [16]. In India, reported 38.41% and 23.15% respectively [17,18]. Rate of culture positivity and isolation rate of organisms from various samples vary by hospitals and country.

In the present study, *Acinetobacter baumannii* was the most frequently isolated pathogen, 49 (37.69%) out of 130 organisms, which correlates with the finding of Bangladesh [19]. Study from Bangladesh reported 7.24% and 34% [5,20]. In India, reported 42.02%
The frequencies of *Acinetobacter* from clinical samples vary by hospital, patient population, exposure to antibiotics, types of patient and changes over time.

Most of the *Acinetobacter* (54.4%) was obtained from endotracheal aspirates in the present study which is similar to the findings of from Bangladesh [16] and another study from India, reported 54.54%, 63.15% and 53.39% respectively [17,18,21]. From Italy [22] reported 72.2%. Higher isolation rate from endotracheal aspirates probably due to the fact that most patients either had prior respiratory problems or were in ventilators or because of low immunity or severe illness gave the best of opportunity of *Acinetobacter* commensal of upper respiratory tract to become a pathogen or from contaminated hands and objects of the health care workers.

OXA-51 like gene is a chromosomal encoded gene and intrinsic to *Acinetobacter baumannii*. Out of 49 isolated strains, 39 (79.59%) were positive for OXA-51 like gene. This finding was correlates with the study from South Africa6 reported 83% positive for OXA-51 like gene while from Saudi Arabia reported 72.7% [23].

According to antimicrobial resistance pattern >70% strains were resistant to each Cotrimoxazole, Doxycycline, Ciprofloxacin and to 3rd generation cephalosporin, 64% to Meropenem >60% to each Gentamicin, Amikacin and Levofloxacin, 56% to Piperacillin-Tazobactam, 43% to Imipenem and 12.82% to Colistin. The antibiotic resistance observed in this study relatively similar to study conducted from Bangladesh and from Iran [24,25]. All the isolates were sensitive to Tigecycline. The difference in resistance of *A. baumannii* is probably due to diversity in clinical samples, time of treatment, and the use of inappropriate antibiotics.
References

26. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and

